Thailand Statistician
January 2012; 10(1) : 141-162
http://statassoc.or.th
Contributed paper

Complete Convergence for Weighted Sums of Arrays of

Rowwise $\tilde{\rho}$-mixing Random Variables

Kamon Budsaba* [a,b] Qiu Dehua [c] Henar Urmeneta [d] Andrei Volodin [e]
[a] Department of Mathematics and Statistics, Thammasat University Rangsit Center, Pathum Thani, 12121, Thailand.
[b] Centre of Excellence in Mathematics, CHE, Si Ayutthaya Rd. Bangkok, 10400, Thailand.
[c] School of Mathematics and Computational Science, Guangdong University of Business Studies, Guangzhou 510320, P.R.China.
[d] Departamento de Estadística e Investigación Operativa de la Universidad Pública de Navarra, Pamplona, Spain.
[e] Department of Mathematics and Statistics, University of Regina, Regina, S4S 0A2, Canada.

* Author for correspondence; e-mail : kamon@mathstat.sci.tu.ac.th

Received: 20 March 2011
Accepted: 19 May 2011

Abstract

In this paper we obtain some new results on complete convergence for weighted sums of arrays of rowwise $\tilde{\rho}$-mixing random variables. Our results improve and extend the some results established for sequences of independent random variables.

Keywords: complete convergence, $\widetilde{\rho}$-mixing random variables, slowly varying function, weighted sums.

1. Introduction

The concept of complete convergence was introduced by Hsu and Robbins in [1] as follows: A sequence of random variables $\left\{X_{n}, \mathrm{n} \geq 1\right\}$ are said to converge completely to a constant C if $\sum_{\mathrm{n}=1}^{\infty} \mathrm{P}\left(\left|\mathrm{X}_{\mathrm{n}}-\mathrm{C}\right|>\boldsymbol{\mathcal { E }}\right)<\infty$ for all $\boldsymbol{\mathcal { E }}>0$. From then on, many authors have devoted their study to complete convergence.

Recently, Sung [2] proved the following two results. In Theorems A and B we assume that $\left\{\mathrm{X}_{\mathrm{n}}, \mathrm{n} \geq 1\right\}$ is a sequence of zero-mean independent random variables stochastically dominated by a random variable X , that is, $\mathrm{P}\left(\left|\mathrm{X}_{\mathrm{n}}\right|>\mathrm{x}\right) \leq \mathrm{CP}(|\mathrm{X}|>\mathrm{x})$ for all $\mathrm{x}>0$ and all $\mathrm{n} \geq 1$ and some positive constant C . Moreover, $\left\{\mathrm{a}_{\mathrm{ni}}, \mathrm{i} \geq 1, \mathrm{n} \geq 1\right\} \quad$ is an array of real numbers satisfying such that $\sup _{\mathrm{n}} \geq 1, i^{\mathrm{i}} \geq 1\left|\mathrm{a}_{\mathrm{ni}}\right|<\infty$ and $\sum_{\mathrm{i}=1}^{\infty} \mathrm{a}_{\mathrm{ni}} X_{\mathrm{i}}$ is finite almost surely for all $\mathrm{n} \geq 1$. Finally, let $t \geq-1,-\infty<\beta<\infty, p>0$ be constants such that $\gamma=p(t+\beta+1)>0$.

Theorem A. Assume that $\mathrm{E}|\mathrm{X}|^{\gamma}<\infty$ and

$$
\begin{equation*}
\sum_{i=1}^{\infty}\left|a_{n i}\right|^{\alpha}=O\left(n^{\beta}\right) \text { for some } \alpha<\gamma . \tag{1}
\end{equation*}
$$

(i) If $1 \leq \gamma<2$, or
(ii) if $\gamma \geq 2$, and

$$
\begin{equation*}
\sum_{i=1}^{\infty} a_{n i}^{2}=O\left(n^{q}\right) \text { for some } q<2 / p \tag{2}
\end{equation*}
$$

then

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{t} P\left(n^{-1 / p}\left|\sum_{i=1}^{\infty} a_{n i} X_{i}\right|>\varepsilon\right)<\infty \text { for all } \varepsilon>0 \tag{3}
\end{equation*}
$$

Theorem B. Assume that $\mathrm{E}|\mathrm{X}|^{\gamma} \log |\mathrm{X}|<\infty$ and

$$
\begin{equation*}
\sum_{i=1}^{\infty}\left|a_{n i}\right|^{\gamma}=O\left(n^{\beta}\right) \text { for all } n \geq 1 \tag{4}
\end{equation*}
$$

(i) If $1 \leq \gamma<2$ or
(ii) If $\gamma \geq 2$ and $\sum_{\mathrm{i}=1}^{\infty}{ }^{\mathrm{a}}{ }_{\mathrm{ni}}^{2}=\mathrm{O}\left(\mathrm{n}^{\mathrm{q}}\right)$ for some $\mathrm{q}<2 / \mathrm{p}$,
then (3) holds.
Let Z be the set of integers and $\left\{\mathrm{a}_{\mathrm{nk}}, \mathrm{n} \geq 1, \mathrm{k} \in \mathbf{Z}\right\}$ be an array of constants. Denote

$$
\mathrm{N}(\mathrm{n}, \mathrm{~m}+1)=\#\left\{\mathrm{k} \in \mathrm{Z}_{: \mid \mathrm{a}_{\mathrm{nk}}} \mid \geq(\mathrm{m}+1)^{-1 / \mathrm{p}}\right\}, \mathrm{p} \geq 2, \mathrm{n} \geq 1, \mathrm{~m} \geq 1,
$$

where the symbol \#A stands for the number of elements in the set A. For two sequences of real numbers $\left\{\mathrm{a}_{\mathrm{m}}, \mathrm{m} \geq 1\right\}$ and $\left\{\mathrm{b}_{\mathrm{m}}, \mathrm{m} \geq 1\right\}$, we write $\mathrm{a}_{\mathrm{m}} \approx \mathrm{b}_{\mathrm{m}}$ as $\mathrm{m} \rightarrow \infty$, if $\mathrm{a}_{\mathrm{m}}=\mathrm{O}\left(\mathrm{b}_{\mathrm{m}}\right)$ and vise versa $\mathrm{b}_{\mathrm{m}}=\mathrm{O}\left(\mathrm{a}_{\mathrm{m}}\right)$ as $\mathrm{m} \longrightarrow \infty$.

Wang et al. [3] proved the following result:
Theorem C. Let $\mathrm{r}>1$ and $\left\{\mathrm{X}_{\mathrm{i}}, \mathrm{i} \in \mathbb{Z}\right\}$ be a sequence of i.i.d. random variables and let $\left\{\mathrm{a}_{\mathrm{ni}}, \mathrm{n} \geq 1, \mathrm{i} \in \mathbf{Z}\right\}$ for be an array of constants.
(I) If $\mathrm{p}>2$ and
$N(n, m+1) \approx m^{q(r-1) / p}, n \geq 1$, as $m \rightarrow \infty$, when $2 \leq q<p$,
$E X=0$, when $1 \leq q(r-1)$,
$\sum_{i \in Z} a_{n i}^{2}=O\left(n^{\delta}\right), n \rightarrow \infty$, when $2 \leq q(r-1)$, for some $0<\delta<2 / p$,
then the following statements are equivalent:
(i) $\mathrm{E}|\mathrm{X}|^{\mathrm{p}(\mathrm{r}-1)}<\infty$;
(ii) $\sum_{\mathrm{i}=1}^{\infty} 2^{\mathrm{i}(\mathrm{r}-1)} \max _{2^{i-1} \leq_{n<2} \mathrm{i}^{\mathrm{i}}} \mathrm{P}\left(\mathrm{n}^{-1 / \mathrm{p}}\left|\sum_{\mathrm{k} \in \mathrm{Z}} \mathrm{a}_{n k} \mathrm{X}_{\mathrm{k}}\right|>\boldsymbol{\varepsilon}\right)<\infty$ for all $\boldsymbol{\varepsilon}>0$.
(II) If $\mathrm{p}=\mathrm{q}=2$ and

$$
\begin{aligned}
& \mathrm{N}(\mathrm{n}, \mathrm{~m}+1) \approx \mathrm{m}^{(\mathrm{r}-1)}, \mathrm{n} \geq 1, \text { as } \mathrm{m} \rightarrow \infty \\
& \mathrm{EX}=0, \text { when } 1 \leq 2(\mathrm{r}-1)
\end{aligned}
$$

$$
\sum_{\mathrm{i} \in \mathrm{Z}}\left|\mathrm{a}_{\mathrm{ni}}\right|^{2(\mathrm{r}-1)}=\mathrm{O}(1), \mathrm{n} \rightarrow \infty
$$

then the following statements are equivalent:
(i) $\mathrm{E}|\mathrm{X}|^{2(\mathrm{r}-1)} \log (1+|\mathrm{X}|)<\infty$;
(ii) $\sum_{i=1}^{\infty} 2^{i(r-1)} \max _{2^{i-1} \leq_{n<2} i} P\left(n^{-1 / 2}\left|\sum_{k \in Z} a_{n k} X_{k}\right|>\varepsilon\right)<\infty$, for all $\varepsilon>0$.

The main purpose of this paper is to generalize the above mentioned results for $\tilde{\rho}$-mixing random variables (see the definition below). Theorem A and Theorem B and the sufficient part of Theorem C are extended and improved for $\widetilde{\rho}$-mixing case.

Let $\{\Omega, \mathcal{J}, \mathrm{P}\}$ be a probability space. In the following, all random variables are assumed to be defined on $\{\Omega, \mathcal{J}, \mathrm{P}\}$. For a sequence of random variables $\left\{\mathrm{X}_{\mathrm{n}}, \mathrm{n} \geq 1\right\}$ we denote $\mathcal{J}_{\mathrm{S}}=\sigma\left(\mathrm{X}_{\mathrm{n}}: \mathrm{n} \in \mathrm{S} \subset \mathrm{N}\right)$. Given two σ-subalgebras $\mathfrak{J}_{1}, \mathfrak{J}_{2} \subset \mathfrak{J}$, denote

$$
\rho\left(\mathcal{J}_{1}, \mathcal{J}_{2}\right)=\sup \left\{|\operatorname{corr}(\zeta, \eta)|, \zeta \in \mathrm{L}_{2}\left(\mathcal{J}_{1}\right), \eta \in \mathrm{L}_{2}\left(\mathcal{J}_{2}\right)\right\}
$$

where the correlation coefficient is defined in usual way

$$
\operatorname{corr}(\zeta, \eta)=\frac{E(\zeta \eta)-E \zeta E \eta}{\sqrt{\operatorname{Var}(\zeta) \operatorname{Var}(\eta)}}
$$

and by $\mathrm{L}_{2}(\mathfrak{J})$ we denote the space of all \mathfrak{J}-measurable random variables ζ such that $\mathrm{E}\left(\zeta^{2}\right)<\infty$.

Stein [4] introduced the following coefficients of dependence (with slightly different notations):
$\widetilde{\rho}(\mathrm{k})=\sup \left\{\mathrm{\rho}\left(\widetilde{J}_{\mathrm{S}}, \widetilde{J}_{\mathrm{T}}\right):\right.$ all finite subsets $\mathrm{S}, \mathrm{T} \subset \mathrm{N}$ such that $\left.\operatorname{dist}(\mathrm{S}, \mathrm{T}) \geq \mathrm{k}\right\}$,
$\mathrm{k} \geq 0$. Obviously, $0 \leq \widetilde{\rho}(\mathrm{k}+1) \leq \widetilde{\rho}(\mathrm{k}) \leq 1, \mathrm{k} \geq 0$, and $\widetilde{\rho}(0)=1$.

Definition. A sequence of random variables $\left\{\mathrm{X}_{\mathrm{n}}, \mathrm{n} \geq 1\right\}$ are said to be a $\tilde{\rho}$-mixing sequence if there exists $k \in N$ such that $\widetilde{\rho}(k)<1$. An array of random variables $\left\{\mathrm{X}_{\mathrm{nk}}, \mathrm{k} \geq 1, \mathrm{n} \geq 1\right\}$ are said to be an array of rowwise $\tilde{\mathrm{\rho}}$-mixing random variables, if, for every positive integer n the sequence of random variables $\left\{X_{n k}, k \geq 1\right\}$ is a $\widetilde{\rho}$ mixing sequence.

For fixed n-th row of an array of rowwise $\widetilde{\rho}$-mixing random variables $\left\{\mathrm{X}_{\mathrm{nk}}, \mathrm{n} \geq 1, \mathrm{k} \geq 1\right\}$ we denote the coefficients of dependence of the sequence $\left\{\mathrm{X}_{\mathrm{nk}}, \mathrm{k} \geq 1\right\}$ as $\tilde{\mathrm{\rho}}_{\mathrm{n}}(\cdot)$ for every $\mathrm{n} \geq 1$.

The notion of $\widetilde{\rho}$-mixing assumption is similar to ρ-mixing, but they are quite different from each other. A number of publications are devoted to $\widetilde{\rho}$-mixing sequence. We refer to Bradley [5,6] for the central limit theorem, Bryc and Smolenski [7] for moment inequalities and almost sure convergence, Shanchao [8] for moment inequalities and strong law of large numbers, Gut and Peligrad [9], Wu [10,11], and Shixin [12] for almost sure convergence, Utev and Peligrad [13] for maximal inequalities and the invariance principle, Dehua and Shixin [14,15] for complete convergence, Dehua and Shixin [16] for Hájeck-Rènyi inequality and strong law of large numbers among many others.

Recall that a measurable function h is said to be slowly varying if for each $\lambda>0$

$$
\lim _{x \rightarrow \infty} \frac{h(\lambda x)}{h(x)}=1
$$

We refer to Seneta [17] for other equivalent definitions and for detailed and comprehensive study of properties of such functions.

Throughout this paper, we assume that $\sum_{i=1}^{\infty}{ }_{n i} X_{n i}$ is finite almost surely, C is a positive constant which may vary from one place to another, the symbol [x] denotes the greatest integer less than x , and the symbol $\lfloor\mathrm{x}\rfloor$ denotes the least integer more than x .

2. Lemmata

In order to prove our main result, we need the following lemmas. The proof of the first lemma could be found in Utev and Peligrad [13].
Lemma 1. For a positive integer J and $0 \leq \mathrm{r}<1$ and $\mathrm{u} \geq 2$, there exists a positive constant $\mathrm{C}=\mathrm{C}(\mathrm{u}, \mathrm{J}, \mathrm{r})$ such that if $\left\{\mathrm{X}_{\mathrm{n}}, \mathrm{n} \geq 1\right\}$ is a sequence of random variables with $\widetilde{\mathrm{\rho}}(\mathrm{~J}) \leq \mathrm{r}_{\mathrm{r}}, \mathrm{EX}_{\mathrm{k}}=0$, and $\mathrm{E}\left|\mathrm{X}_{\mathrm{k}}\right|^{\mathrm{u}}<\infty$ for every $\mathrm{k} \geq 1$, then for all $\mathrm{n} \geq 1$,

$$
\underset{1 \leq i \leq n}{\mathrm{E} \max _{\mathrm{n}}}\left|\sum_{\mathrm{k}=1}^{\mathrm{i}} \mathrm{X}_{\mathrm{k}}\right|^{\mathrm{u}} \leq \mathrm{C}\left\{\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{E}\left|\mathrm{X}_{\mathrm{k}}\right|^{\mathrm{u}}+\left(\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{EX}_{\mathrm{k}}^{2}\right)^{\mathrm{u} / 2}\right\}
$$

The second lemma is well known and we do not present the proof.

Lemma 2. Let $\left\{X_{\mathrm{nk}}, \mathrm{n} \geq 1, \mathrm{k} \geq 1\right\}$ be an array of random variables stochastically dominated by a random variable X, then there exists a constant D such that for all $\mathrm{u}>0$ and $\mathrm{x}>0$,

(ii) $\mathrm{E}\left|\mathrm{X}_{\mathrm{nk}}\right|^{\mathrm{u}} \mathrm{I}\left(\left|\mathrm{X}_{\mathrm{nk}}\right|>\mathrm{x}\right) \leq \mathrm{DE}|\mathrm{X}|^{\mathrm{u}} \mathrm{I}(|\mathrm{X}|>\mathrm{x})$.

The proof of the last lemma could be found in Bai and Su [18]
Lemma 3. Let $\mathrm{h}(\mathrm{x})>0$ be a slowly varying function as $\mathrm{x} \longrightarrow+\infty$, then
(i) $\lim _{k \rightarrow+\infty_{2}{ }^{k} \leq_{x} \leq 2^{k+1}} \frac{h(x)}{h\left(2^{k}\right)}=1$,

$$
\lim _{x \rightarrow+\infty} \delta_{h(x)=+\infty,} \quad \lim _{x \rightarrow \infty} x^{-} \delta_{h(x)}=0, \text { for all } \delta>0
$$

(ii) For all $\delta>0, \eta>0$, and all positive integers k

$$
\left.\left.\mathrm{C} \cdot 2^{\mathrm{k}} \delta_{\mathrm{h}\left(2^{\mathrm{k}}\right.} \cdot \eta\right) \leq \sum_{\mathrm{j}=1}^{\mathrm{k}} 2^{j} \delta_{\mathrm{h}\left(2^{\mathrm{j}}\right.} \cdot \eta\right) \leq \mathrm{C} \cdot 2^{\left.\mathrm{k} \delta_{h\left(2^{k}\right.} \cdot \eta\right) .}
$$

(iii) For all $\delta<0, \eta>0$ all positive integers k

3. Main Results and Proofs

With the preliminaries accounted for, we can now formulate and prove main results of this paper.
Theorem 1. Let $\mathrm{p}>0, \mathrm{t}, \boldsymbol{\beta}$ be constants such that $\mathrm{t}+\boldsymbol{\beta}>-1, \mathrm{~h}(\mathrm{x})>0$ be a slowly varying function, $\left\{\mathrm{X}_{\mathrm{nk}}, \mathrm{n} \geq 1, \mathrm{k} \geq 1\right\}$ be an array of zero-mean rowwise $\widetilde{\rho}$-mixing random variables stochastically dominated by a random variable X , and $\left\{\mathrm{a}_{\mathrm{ni}}, \mathrm{i} \geq 1, \mathrm{n} \geq 1\right\}$ be an array of constants satisfying (1). Assume that

$$
\varlimsup_{\mathrm{k} \rightarrow \infty} \sup \tilde{\rho}_{\mathrm{n}}(\mathrm{k})<1 \text { and } \mathrm{E}|\mathrm{X}|^{\gamma} \mathrm{h}\left(|\mathrm{X}|^{\mathrm{p}}\right)<\infty
$$

where $\gamma=\mathrm{p}(\mathrm{t}+\beta+1)>0$.
If $\mathrm{t}=-1$ we additionally assume that $\mathrm{E}|\mathrm{X}|^{\gamma}<\infty$.
(i) If $\gamma=1$, and $\mathrm{E}|\mathrm{X}|<\infty$, then
$\sum_{j=0}^{\infty} 2^{j(t+1)} h\left(2^{j}\right) \max _{2^{j} \leq n<2^{j+1}} P\left(n^{-1 / p}\left|\sum_{i=1}^{\infty} a_{n i} X_{n i}\right|>\varepsilon\right)<\infty$ for all $\varepsilon>0$,
moreover
$\sum_{n=1}^{\infty} n^{t} h(n) P\left(n^{-1 / p}\left|\sum_{i=1}^{\infty} a_{n i} X_{n i}\right|>\varepsilon\right)<\infty$ for all $\varepsilon>0$.
(ii) If $1<\gamma<2$, then (8) and (9) hold.
(iii) If $\gamma=2,\left\{\mathrm{a}_{\mathrm{ni}}, \mathrm{n} \geq 1, \mathrm{i} \geq 1\right\}$ satisfies (2), and $\mathrm{E}|\mathrm{X}|^{2}<\infty$, then (8) and (9) hold.
(iv) If $\gamma \geq 2$ and $\left\{\mathrm{a}_{\mathrm{ni}}, \mathrm{n} \geq 1, \mathrm{i} \geq 1\right\}$ satisfies (2), then (8) and (9) hold.

Proof. First of all we note that it is enough to show that (8) holds. Really, by Lemma 3 we have

$$
\begin{aligned}
& \sum_{\mathrm{n}=1}^{\infty} \mathrm{n}^{\mathrm{t}} \mathrm{~h}(\mathrm{n}) \mathrm{P}\left(\mathrm{n}^{-1 / \mathrm{p}}\left|\sum_{\mathrm{i}=1}^{\infty} \mathrm{a}_{\mathrm{ni}} \mathrm{X}_{\mathrm{ni}}\right|>\boldsymbol{\mathcal { E }}\right) \\
& =\sum_{\mathrm{j}=0}^{\infty} \sum_{2} \sum_{\mathrm{j}_{\mathrm{n}<2} \mathrm{j}+1} \mathrm{n}^{\mathrm{t}} \mathrm{~h}^{\infty}(\mathrm{n}) \mathrm{P}\left(\mathrm{n}^{-1 / \mathrm{p}}\left|\sum_{\mathrm{i}=1}^{\infty} \mathrm{a}_{\mathrm{ni}} \mathrm{X}_{\mathrm{ni}}\right|>\boldsymbol{\varepsilon}\right)
\end{aligned}
$$

$$
\leq C+C \sum_{j=0}^{\infty} 2^{j(t+1)} h\left(2^{j}\right) \max _{2^{j} \leq_{n<2} j+1} P\left(n^{-1 / p}\left|\sum_{i=1}^{\infty} a_{n i} X_{n i}\right|>\varepsilon\right)<\infty
$$

therefore, (9) holds.
If $t<-1$, then by Lemma 3 (i) we obtain that (8) holds. Thus, we assume that $\mathrm{t} \geq-1$. Since $\sum_{\mathrm{i}=1}^{\infty} \mathrm{a}_{\mathrm{ni}} \mathrm{X}_{\mathrm{ni}}$ is finite almost surely for each $\mathrm{n} \geq 1$, there exists positive integer k_{n} such that

$$
\mathrm{P}\left(\mathrm{n}^{-1 / \mathrm{p}}\left|\sum_{\mathrm{i}=\mathrm{k}_{\mathrm{n}}+1}^{\infty} \mathrm{a}_{\mathrm{ni}} \mathrm{X}_{\mathrm{ni}}\right|>\boldsymbol{\varepsilon} / 2\right)<\mathrm{n}^{-\mathrm{t}-2)}, \text { for all } \mathrm{n} \geq 1
$$

By Lemma 3 (iii), in order to prove (8), it is enough to show that
$\sum_{j=0}^{\infty} 2^{j(t+1)} h\left(2^{j}\right) \max _{2^{j} \leq n<2^{j+1}} P\left(n^{-1 / p}\left|\sum_{i=1}^{k_{n}} a_{n i} X_{n i}\right|>\varepsilon / 2\right)<\infty$.
Without loss of generality, we assume that $a_{\text {ni }}>0$ for all $\mathrm{n} \geq 1, \mathrm{i} \geq 1, \sup _{\mathrm{i}} \geq 1, \mathrm{n} \geq 1{ }_{\mathrm{a}}{ }_{\mathrm{ni}}=1$, and $\sum_{\mathrm{i}=1}^{\infty} \mathrm{a}_{\mathrm{ni}}{ }^{\alpha} \leq_{\mathrm{n}} \beta$. Thus, for any $\theta \geq 0$, we have $\sum_{i=1}^{\infty} a_{n i}^{\alpha+\theta} \leq n^{\beta}$.

For $\mathrm{i} \geq 1, \mathrm{n} \geq 1$ we define

$$
\mathrm{U}_{\mathrm{ni}}=\mathrm{X}_{\mathrm{ni}} \mathrm{I}\left(\left|\mathrm{a}_{\mathrm{ni}} \mathrm{X}_{\mathrm{ni}}\right| \leq \mathrm{n}^{1 / \mathrm{p}}\right), \mathrm{V}_{\mathrm{ni}}=\mathrm{X}_{\mathrm{ni}} \mathrm{I}\left(\left|\mathrm{a}_{\mathrm{ni}} \mathrm{X}_{\mathrm{ni}}\right|>\mathrm{n}^{1 / \mathrm{p}}\right)
$$

Since $\mathrm{EX}_{\mathrm{ni}}=0$, we obtain

$$
\begin{align*}
& \sum_{j=0}^{\infty} 2^{j(t+1)} h\left(2^{j}\right) \max _{2^{j} \leq{ }_{n}<2^{j+1}} P\left(n^{-1 / p}\left|\sum_{i=1}^{k_{n}} a_{n i} X_{n i}\right|>\varepsilon / 2\right) \\
& \leq \sum_{j=0}^{\infty} 2^{j(t+1)} h\left(2^{j}\right) \max _{2^{j} \leq{ }_{n}<2^{j+1}} P\left(n^{-1 / p}\left|\sum_{i=1}^{k_{n}} a_{n i}\left(U_{n i}-E U_{n i}\right)\right|>\mathcal{E} / 4\right) \\
& +\sum_{j=0}^{\infty} 2^{j(t+1)} h\left(2^{j}\right){ }_{2^{j} \leq{ }_{n<2}<}^{\max }{ }_{j+1} P\left(n^{-1 / p}\left|\sum_{i=1}^{k_{n}} a_{n i}\left(V_{n i}-E V_{n i}\right)\right|>\varepsilon / 4\right) \\
& \text { Def } \\
& =J_{1}+J_{2} \text {. } \tag{12}
\end{align*}
$$

We estimate each term J_{1} and J_{2} separately.
For J_{2}, we first prove that

$$
n^{-1 / p}\left|\sum_{i=1}^{k_{n}} a_{n i} E V_{n i}\right| \rightarrow 0 \text { as } n \rightarrow \infty .
$$

If $\gamma=1$, since $\mathrm{E}|\mathrm{X}|<\infty$, by Lemma 2 and (11), we have

$$
\begin{aligned}
& \mathrm{n}^{-1 / \mathrm{p}}\left|\sum_{\mathrm{i}=1}^{\mathrm{k}_{\mathrm{n}}} \mathrm{a}_{\mathrm{n}} \mathrm{EV}_{\mathrm{ni}}\right| \leq_{\mathrm{n}}{ }^{-1 / \mathrm{p}+\beta_{\mathrm{E}}|\mathrm{X}| \mathrm{I}\left(|\mathrm{X}|>\mathrm{n}^{1 / \mathrm{p}}\right)} \\
& \leq_{\mathrm{n}}{ }^{-(\mathrm{t}+1)} \mathrm{E}|\mathrm{X}| \mathrm{I}\left(|\mathrm{X}|>\mathrm{n}^{1 / \mathrm{p}}\right) \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty .
\end{aligned}
$$

If $\gamma>1, \mathrm{t}>-1$, select η such that $\max \{\mathrm{p} \beta, \alpha, 1\}<\boldsymbol{\eta}<\gamma$. Since $\mathrm{E}|\mathrm{X}|^{\gamma} \mathrm{h}\left(|\mathrm{X}|^{\mathrm{p}}\right)<\infty$, then by Lemma 3 (i), we have $\mathrm{E}|\mathrm{X}|^{\eta}<\infty$. Therefore, by Lemma 2 and (11), we obtain

$$
\begin{gathered}
n^{-1 / p}\left|\sum_{i=1}^{k_{n}} a_{n i} E V_{n i}\right| \leq_{n}{ }^{-1 / p} \sum_{i=1}^{\infty}-(\eta-1) /\left.p_{E \mid a_{n i}} X_{n i}\right|^{\eta} I_{\left(\left|a_{n i} X_{n i}\right|>n^{1 / p}\right)} \\
\leq_{n}-\eta / p+\beta_{E|X|^{1 / p}}^{\eta_{I}\left(|X|>n^{1 / p}\right)}
\end{gathered}
$$

$$
=\mathrm{n}^{(\mathrm{p} \beta-\eta) / \mathrm{p}} \mathrm{E}|\mathrm{X}|^{\eta} \mathrm{I}\left(|\mathrm{X}|>\mathrm{n}^{1 / \mathrm{p}}\right) \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty .
$$

If $\gamma>1, \mathrm{t}=-1$, since $\mathrm{E}|\mathrm{X}|^{\gamma}<\infty$ we obtain

Thus, (13) holds. Hence, there exists n large enough such that

$$
\begin{equation*}
n^{-1 / p}\left|\sum_{i=1}^{k_{n}} a_{n i} E V_{n i}\right|<\varepsilon / 8 \tag{14}
\end{equation*}
$$

Select $\delta>0$ such that $\gamma-\delta>0$ and $\gamma-\delta>\alpha$, by (14), (11), Lemma 2 (ii) and Lemma 3 (ii), we have

$$
\leq \mathrm{C}+\sum^{\infty} 2^{j(t+1)} h\left(2^{j}\right) 2^{-j(\gamma-\delta) / p+{ }_{j} \beta_{E|X|} \gamma^{\gamma-\delta} I\left(|X|>2^{j / p}\right)}
$$

$$
=\mathrm{C}+\sum_{\mathrm{j}=0}^{\infty} 2^{\mathrm{j} \delta / \mathrm{p}} \mathrm{~h}\left(2^{\mathrm{j}}\right) \mathrm{E}|\mathrm{X}|^{\gamma-\delta} \mathrm{I}\left(|\mathrm{X}|>2^{\mathrm{j} / \mathrm{p}}\right)
$$

$$
\begin{aligned}
& n^{-1 / p}\left|\sum_{\mathrm{i}=1}^{\mathrm{k}_{\mathrm{n}}} \mathrm{a}_{\mathrm{ni}} E V_{\mathrm{ni}}\right| \leq \mathrm{n}^{-1 / \mathrm{p}} \sum_{\mathrm{i}=1}^{\infty} \mathrm{n}^{-(\gamma-1) / \mathrm{p}} E\left|\mathrm{a}_{\mathrm{ni}} X_{\mathrm{ni}}\right|^{\gamma} \mathrm{I}^{\infty}\left(\left|\mathrm{a}_{\mathrm{ni}} X_{\mathrm{ni}}\right|>\mathrm{n}^{1 / \mathrm{p}}\right) \\
& \leq_{\mathrm{n}}-\gamma / \mathrm{p}+\beta_{\mathrm{E}|\mathrm{X}|} \gamma_{\mathrm{I}}\left(\mathrm{X} \mid>\mathrm{n}^{1 / \mathrm{p}}\right) \\
& =\mathrm{E}|\mathrm{X}|^{\gamma} \mathrm{I}\left(\mathrm{X} \mid>\mathrm{n}^{1 / \mathrm{p}}\right) \longrightarrow 0 \text { as } \mathrm{n} \rightarrow \infty \text {. }
\end{aligned}
$$

$$
\begin{align*}
& =\mathrm{C}+\sum_{\mathrm{j}=0}^{\infty} 2^{\mathrm{j} \delta / \mathrm{p}} \mathrm{~h}\left(2^{\mathrm{j}}\right) \sum_{\mathrm{i}=\mathrm{j}}^{\infty} \mathrm{E}|\mathrm{X}|^{\gamma-\delta} \mathrm{I}\left(2^{\mathrm{i} / \mathrm{p}}<|\mathrm{X}| \leq 2^{(\mathrm{i}+1) / \mathrm{p}}\right) \\
& \left.=\mathrm{C}+\sum_{\mathrm{i}=0}^{\infty} \mathrm{E}|\mathrm{X}|^{\gamma-\delta} \mathrm{I}_{\mathrm{I}} 2^{\mathrm{i} / \mathrm{p}}<|\mathrm{X}| \leq 2^{(\mathrm{i}+1) / \mathrm{p}}\right) \sum_{\mathrm{j}=0}^{\mathrm{i}} 2^{\mathrm{j} \delta / \mathrm{p}} \mathrm{~h}\left(2^{\mathrm{j}}\right) \\
& \leq \mathrm{C}+\mathrm{C} \sum_{\mathrm{i}=0}^{\infty} \mathrm{h}\left(2^{\mathrm{i}}\right) \mathrm{E}|\mathrm{X}|^{\gamma} \mathrm{I}\left(2^{\mathrm{i} / \mathrm{p}}<|\mathrm{X}| \leq 2^{(\mathrm{i}+1) / \mathrm{p}}\right) \\
& \leq C+C E|X|^{\gamma} h\left(|X|^{p}\right)<\infty . \tag{15}
\end{align*}
$$

In order to estimate J_{1}, we first note that obviously for every positive integer n , $\left\{\mathrm{U}_{\mathrm{ni}}-\mathrm{EU}_{\mathrm{ni}}, 1 \leq \leq_{\mathrm{i}} \mathrm{k}_{\mathrm{n}}\right\}$ is a sequence of zero-mean $\tilde{\rho}$-mixing random variables with the mixing coefficient not greater than $\widetilde{\rho}_{n}(\cdot)$.

Fix any $\mathrm{v} \geq 2$ and $\mathrm{v}>\gamma$ (the value of v will be specified later). By Markov's inequality, Lemma 1, and C_{r}-inequality, , we have

$$
\begin{align*}
& J_{1} \leq C \sum_{j=0}^{\infty} 2^{j(t+1)} h\left(2^{j}\right) \max _{2^{j} \leq_{n<2}{ }_{j+1} n^{-v / p}\left\{\sum_{i=1}^{k_{n}} E\left|a_{n i} U_{n i}\right|^{v}+\left(\sum_{i=1}^{k_{n}} E\left|a_{n i} U_{n i}\right|^{2}\right)^{v / 2}\right\}, ~}^{\text {ind }} \\
& \leq C \sum_{j=0}^{\infty} 2^{j(t+1)} h\left(2^{j}\right) \underset{2^{j} \leq{ }_{n}<2}{\max { }_{j+1} n^{-v / p}\left\{\sum_{i=1}^{\infty} E\left|a_{n i} U_{n i}\right|^{v}+\left(\sum_{i=1}^{\infty} E\left|a_{n i} U_{n i}\right|^{2}\right)^{v / 2}\right\}, ~} \\
& \text { Def } \\
& =J_{3}+J_{4} \text {. } \tag{16}
\end{align*}
$$

Let $\mathrm{I}_{\mathrm{nk}}=\left\{\mathrm{i}:(\mathrm{k}+1)^{-1 / \mathrm{p}}<\left|\mathrm{a}_{\mathrm{ni}}\right|_{\leq_{\mathrm{k}}}^{-1 / \mathrm{p}}\right\}, \mathrm{k} \geq 1, \mathrm{n} \geq 1$, then $\cup_{\mathrm{k}=1}^{\infty} \mathrm{I}_{\mathrm{nk}}=\mathrm{N}$ for all $\mathrm{n} \geq 1$. Since $\mathrm{v}>\boldsymbol{\gamma}>\boldsymbol{\alpha}$, we have $\mathrm{k}^{(\mathrm{v}-\alpha) / \mathrm{p}}>\mathrm{j}^{(\mathrm{v}-\alpha) / \mathrm{p}}$ for all $\mathrm{k}>\mathrm{j}, \mathrm{j}, \mathrm{k} \geq 1$. For $\alpha>0$

$$
\begin{aligned}
& { }_{\mathrm{n}}^{\beta} \geq \sum_{\mathrm{i}=1}^{\infty}\left|\mathrm{a}_{\mathrm{ni}}\right|^{\alpha}=\sum_{\mathrm{k}=1 \mathrm{i} \in \mathrm{I}_{\mathrm{nk}}}^{\infty} \sum_{\mathrm{ni}} \mid \mathrm{a}^{\alpha} \geq \sum_{\mathrm{k}=1}^{\infty}\left(\# \mathrm{I}_{\mathrm{nk}}\right)(\mathrm{k}+1)^{-\alpha / \mathrm{p}} \\
& \geq \sum_{\mathrm{k}=\mathrm{j}}^{\infty}\left(\# \mathrm{I}_{\mathrm{nk}}\right)(\mathrm{k}+1)^{-\mathrm{v} / \mathrm{p}}(\mathrm{j}+1)^{(\mathrm{v}-\alpha) / \mathrm{p}} \\
& >2^{-\alpha / \mathrm{p}} \sum_{\mathrm{k}=\mathrm{j}}^{\infty}\left(\# \mathrm{I}_{\mathrm{nk}}\right) \mathrm{k}^{-\mathrm{v} / \mathrm{p}_{\mathrm{j}}(\mathrm{v}-\alpha) / \mathrm{p}}
\end{aligned}
$$

For $\alpha<0$, we also have

$$
\begin{aligned}
& { }_{\mathrm{n}} \beta^{2} \geq \sum_{\mathrm{i}=1}^{\infty}\left|\mathrm{a}_{\mathrm{ni}}\right|^{\alpha}=\sum_{\mathrm{k}=1 \mathrm{i} \in \mathrm{I}_{\mathrm{nk}}}^{\infty} \sum_{\mathrm{ni}}\left|\mathrm{a}_{\mathrm{k}}\right|^{\alpha} \geq \sum_{\mathrm{k}=1}^{\infty}\left(\# \mathrm{I}_{\mathrm{nk}}\right) \mathrm{k}^{-\alpha / \mathrm{p}} \\
& >\sum_{\mathrm{k}=\mathrm{j}}^{\infty}\left(\# \mathrm{I}_{\mathrm{nk}}\right) \mathrm{k}^{-\mathrm{v} / \mathrm{p}_{\mathrm{j}}(\mathrm{v}-\alpha) / \mathrm{p}}
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\sum_{k=j}^{\infty}\left(\# I_{n k}\right) k^{-v / p} \leq C n^{\beta} j^{-(v-\alpha) / p} \text { for all } j \geq 1 \tag{17}
\end{equation*}
$$

By the same way as we proved (15) and by Lemma 2(i), we have

$$
\begin{gathered}
J_{3} \leq C \sum_{j=0}^{\infty} 2^{j(t+1)} h\left(2^{j}\right) \max _{2^{j} \leq n<2^{j+1}} n^{-\frac{v}{p}} \sum_{i=1}^{\infty}\left(n^{\frac{v}{p}} P\left(\left|a_{n i} X\right|>n^{1 / p}\right)+E\left|a_{n i} X\right|^{v} I\left(\left|a_{n i} X\right| \leq n^{1 / p}\right)\right) \\
\leq C \sum_{j=0}^{\infty} 2^{j(t+1)} h\left(2^{j}\right) \max _{2^{j} \leq n<2^{j+1}} \sum_{i=1}^{\infty} P\left(\left|a_{n i} X\right|>n^{1 / p}\right)
\end{gathered}
$$

$$
\begin{align*}
& =C+C \sum_{j=0}^{\infty} 2^{j(t+1)} h\left(2^{j}\right) \max _{2^{j} \leq n<2^{j+1}} \sum_{k=1}^{\infty}\left(\# I_{n k}\right)(n k)^{\frac{v}{p}} \sum_{i=1}^{n(k+1)} E|X|^{v} I\left((i-1)^{1 / p} \leq|X|<i^{1 / p}\right) \\
& =C+C \sum_{j=0}^{\infty} 2^{j(t+1)} h\left(2^{j}\right) \max _{2^{j} \leq n<2^{j+1}} \sum_{k=1}^{\infty}\left(\# I_{n k}\right)(n k)^{\frac{v}{p}} \sum_{i=1}^{2 n} E|X|^{v} I\left((i-1)^{1 / p} \leq|X|<i^{1 / p}\right) \\
& +C \sum_{j=0}^{\infty} 2^{j(t+1)} h\left(2^{j}\right) \max _{2^{j} \leq n<2^{j+1}} \sum_{k=2}^{\infty}\left(\# I_{n k}\right)(n k)^{\frac{v}{p}} \sum_{i=2 n+1}^{n(k+1)} E|X|^{v} I\left((i-1)^{1 / p} \leq|X|<i^{1 / p}\right) \\
& \text { Def } C+J_{5}+J_{6} .
\end{align*}
$$

Since $\mathrm{v}>\gamma$, we have that $(\gamma-\mathrm{v}) / \mathrm{p}<0$. Then by (17) and Lemma 3

$$
\begin{align*}
& J_{5} \leq C \sum_{j=0}^{\infty} 2^{j(t+1)} h\left(2^{j}\right) \max _{2^{j} \leq_{n<2} j+1} n^{-v / p+\beta} \sum_{i=1}^{2 n} E|X|^{v} I\left((i-1)^{1 / p} \leq|X|<i^{1 / p}\right) \\
& \leq \mathrm{C} \sum_{\mathrm{j}=0}^{\infty} 2^{\mathrm{j}(\gamma-\mathrm{v}) / \mathrm{p}} \mathrm{~h}\left(2^{\mathrm{j}}\right) \sum_{\mathrm{i}=1}^{4} \mathrm{E}|X|^{\mathrm{v}} \mathrm{I}\left((\mathrm{i}-1)^{1 / \mathrm{p}} \leq|X|<i^{1 / \mathrm{p}}\right) \\
& +C \sum_{j=1}^{\infty} 2^{j(\gamma-v) / p} h\left(2^{j}\right) \sum_{i=5}^{2^{j+2}} E|X|^{v} I\left((i-1)^{1 / p} \leq|X|<i^{1 / p}\right) \\
& \leq \mathrm{C}+\mathrm{C} \sum_{\mathrm{i}=5}^{\infty} \mathrm{E}|X|^{\mathrm{V}} I\left((i-1)^{1 / \mathrm{p}} \leq|X|<i^{1 / p}\right) \sum_{j=\left\lfloor\log _{2} \mathrm{i}\right\rfloor-2}^{\infty} 2^{j(\gamma-\mathrm{v}) / \mathrm{p}} h\left(2^{j}\right) \\
& \leq \mathrm{C}+\mathrm{C} \sum_{\mathrm{i}=5}^{\infty} \mathrm{i}^{\infty}(\gamma-\mathrm{v}) / \mathrm{p} h(\mathrm{i}) \mathrm{E}|\mathrm{X}|^{\mathrm{v}} \mathrm{I}\left((\mathrm{i}-1)^{1 / \mathrm{p}} \leq|\mathrm{X}|<\mathrm{i}^{1 / \mathrm{p}}\right) \\
& \leq C+C E|X|^{\gamma} h\left(|X|^{p}\right)<\infty . \tag{19}
\end{align*}
$$

Next,

$$
\begin{align*}
& \leq \mathrm{C} \sum_{\mathrm{i}=3}^{\infty}-(\mathrm{v}-\alpha) / \mathrm{p} \mathrm{E}|\mathrm{X}|^{\mathrm{v}} \mathrm{I}\left((\mathrm{i}-1)^{1 / \mathrm{p}} \leq|\mathrm{X}|<\mathrm{i}^{1 / \mathrm{p}}\right) \\
& +C \sum_{j=1}^{\infty} 2^{j(t+1)} h\left(2^{j}\right) \sum_{i=2}^{\infty} 2^{j(\beta-\alpha / p)} i_{i}-(v-\alpha) / p E|X|^{v} I\left((i-1)^{1 / p} \leq|X|<i^{1 / p}\right) \\
& \leq \mathrm{CE}|\mathrm{X}|^{\alpha}+\mathrm{C}_{\mathrm{i}=2}^{\infty} \mathrm{i}^{-(\mathrm{v}-\alpha) / \mathrm{p}} \mathrm{E}|\mathrm{X}|^{\mathrm{v}} \mathrm{I}\left((\mathrm{i}-1)^{1 / \mathrm{p}} \leq \mid \mathrm{X\mid<i}^{1 / p}\right) \sum_{\mathrm{j}=1}^{\left[\log _{2} \mathrm{i}\right]} 2^{j(\gamma-\alpha) / \mathrm{p}} \mathrm{~h}\left(2^{\mathrm{j}}\right) \\
& \leq \mathrm{C}+\mathrm{C} \sum_{\mathrm{i}=2}^{\infty} \mathrm{i}^{-(\mathrm{v}-\gamma) / \mathrm{p}} \mathrm{~h}(\mathrm{i}) \mathrm{E}|\mathrm{X}|^{\mathrm{v}} \mathrm{I}\left((\mathrm{i}-1)^{1 / \mathrm{p}} \leq|\mathrm{X}|<\mathrm{i}^{1 / \mathrm{p}}\right) \\
& \leq C+C E|X|^{\gamma} h\left(|X|^{p}\right)<\infty . \tag{20}
\end{align*}
$$

Therefore, from (18), (19), and (20) we have that $\mathrm{J}_{3}<\infty$ for $\gamma \geq 1$.

$$
\text { For } \mathrm{J}_{4} \text {, if } \gamma \geq 2 \text { by (2) we have }
$$

$\sum_{i=1}^{\infty} E\left|a_{n i} U_{n i}\right|^{2} \leq C \sum_{i=1}^{\infty} E\left|a_{n i} X\right|^{2} \leq C n^{q}$.
Since $q<2 / p$, we can chose v large enough such that $(t+1)+v(q / 2-1 / p)<0$.
By Lemma 3 (iii) we obtain

$$
\begin{equation*}
J_{4} \leq C \sum_{j=0}^{\infty} 2^{j(t+1)} h\left(2^{j}\right) \max _{2^{j} \leq n<2^{j+1}} n^{-v / p} n^{v q / 2} \leq C \sum_{j=0}^{\infty} 2^{j j(t+1)+v(q / 2-1 / p)\}} h\left(2^{j}\right)<\infty \tag{22}
\end{equation*}
$$

If $1 \leq \gamma<2$, let $v=2$, then $\mathrm{J}_{4}=\mathrm{J}_{3}<\infty$. Therefore $\mathrm{J}_{1}<\infty$ for $\gamma \geq 1$. By (12), (10) holds.

Remark 1. (i) If there exists a positive constant $M>0$ such that $h(x) \geq M$ for sufficiently large x, then the assumption $E|X|^{p(t+\beta+1)} h\left(|X|^{p}\right)<\infty$ implies that $E|X|^{p(t+\beta+1)}<\infty$.
(ii) Let $\mathrm{h}(\mathrm{x})=1, \mathrm{X}_{\mathrm{ni}}=\mathrm{X}_{\mathrm{i}}$, for all $\mathrm{i} \geq 1, \mathrm{n} \geq 1$, and $\left\{\mathrm{X}_{\mathrm{i}}, \mathrm{i} \geq 1\right\}$ be a sequence of independent random variables. Then Theorem A follows from Theorem 1, since independent random variables are a special case of $\tilde{\rho}$-mixing random variables.
(iii) Let $\beta=0, \mathrm{t}=\mathrm{r}-2$, and $\mathrm{h}(\mathrm{x})=1$. If condition (5) holds, then (1) holds according to (2.11) of Wang et al. [2], with $\alpha=\widetilde{\mathrm{q}}(\mathrm{r}-1), \gamma=\mathrm{p}(\mathrm{r}-1), 2 \leq \mathrm{q}<\widetilde{\mathrm{q}}<\mathrm{p}$. When $0<\mathrm{q}(\mathrm{r}-1)<2$, by (2.11) of Wang et al. [2], we have that $\sum_{\mathrm{i} \in \mathrm{Z}^{\mathrm{a}}}{ }_{\mathrm{ni}}^{2}=\mathrm{O}(1)$. Therefore, if (5) and (7) hold, we have $\sum_{i \in Z^{a}}{ }_{n i}=O\left(n^{\delta}\right)$, for $0<\delta<2 / \mathrm{p}$. Thus Theorem 1 extends and improves the sufficient part of Theorem $C(I)$ for the case of $\widetilde{\rho}$ mixing random variables.

If condition (1) on the weights is replaced by a weaker condition (4), we obtain the following theorem.
Theorem 2. Let $\left\{\mathrm{X}_{\mathrm{nk}}, \mathrm{k} \geq 1, \mathrm{n} \geq 1\right\}$ be an array of zero-mean rowwise $\widetilde{\rho}$-mixing random variables stochastically dominated by a random variable X. Assume that $\overline{\lim }_{\mathrm{k} \rightarrow \infty} \sup _{\mathrm{n}} \tilde{\mathrm{\rho}}_{\mathrm{n}}(\mathrm{k})<1$ and $\mathrm{E}|\mathrm{X}|^{\gamma} \log |\mathrm{X}|<\infty$, where $\gamma=\mathrm{p}(\mathrm{t}+\beta+1)>0$ and $\mathrm{p}>0$. Let $\left\{\mathrm{a}_{\mathrm{ni}}, \mathrm{i} \geq 1, \mathrm{n} \geq 1\right\}$ be an array of real numbers satisfying (4).
(i) If $1 \leq \gamma<2$, then
$\sum_{j=0}^{\infty} 2^{j(t+1)} \max _{2^{j} \leq n<2^{j+1}} P\left(n^{-1 / p}\left|\sum_{i=1}^{\infty} a_{n i} X_{n i}\right|>\varepsilon\right)<\infty$ for all $\varepsilon>0$,
moreover

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{t} P\left(n^{-1 / p}\left|\sum_{i=1}^{\infty} a_{n i} X_{n i}\right|>\varepsilon\right)<\infty \text { for all } \varepsilon>0 \tag{24}
\end{equation*}
$$

(ii) If $\gamma \geq 2$ and $\left\{\mathrm{a}_{\mathrm{ni}}, \mathrm{i} \geq 1, \mathrm{n} \geq 1\right\}$ satisfies (2), then (23) and (24) hold.

Proof. Let $\mathrm{U}_{\mathrm{nk}}, \mathrm{V}_{\mathrm{nk}}, \mathrm{I}_{\mathrm{nk}}, \mathrm{J}_{\mathrm{k}}$ be as in the proof of Theorem 1. From this proof, it is sufficient to show $\mathrm{J}_{2}<\infty$ and $\mathrm{J}_{\mathrm{j}}<\infty, \mathrm{j}=4,5,6$ with $\mathrm{h}(\mathrm{x})=1$.

For J_{2}, we first prove that

$$
\mathrm{n}^{-1 / \mathrm{p}}\left|\sum_{\mathrm{i}=1}^{\mathrm{k}_{\mathrm{n}}} \mathrm{a}_{\mathrm{ni}} \mathrm{EV}_{\mathrm{ni}}\right| \longrightarrow 0 \text { as } \mathrm{n} \longrightarrow \infty
$$

Since $\mathrm{E}|\mathrm{X}|^{\gamma} \log |\mathrm{X}|<\infty$, we have $\mathrm{E}|\mathrm{X}|^{\gamma}<\infty$ and hence

$$
\begin{gathered}
\mathrm{n}^{-1 / \mathrm{p}}\left|\sum_{\mathrm{i}=1}^{\mathrm{k}_{\mathrm{n}}} \mathrm{a}_{\mathrm{ni}} E V_{\mathrm{ni}}\right| \leq_{\mathrm{n}^{-1 / \mathrm{p}} \sum_{\mathrm{i}=1}^{\infty} \mathrm{n}^{-(\gamma-1) / \mathrm{p}} \mathrm{E}\left|\mathrm{a}_{\mathrm{ni}} \mathrm{X}_{\mathrm{ni}}\right|^{\gamma} \mathrm{I}\left(\left|\mathrm{a}_{\mathrm{ni}} \mathrm{X}_{\mathrm{ni}}\right|>\mathrm{n}^{1 / \mathrm{p}}\right)} \\
\quad \leq \mathrm{n}^{-\gamma / \mathrm{p}+\left.\beta_{\mathrm{E} \mid \mathrm{X}}\right|^{\gamma} \mathrm{I}\left(\mathrm{X} \mid>\mathrm{n}^{1 / \mathrm{p}}\right)} \\
=\mathrm{n}^{-(\mathrm{t}+1))} \mathrm{E}|\mathrm{X}|^{\gamma} \mathrm{I}\left(\mathrm{X} \mid>\mathrm{n}^{1 / \mathrm{p}}\right) \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty
\end{gathered}
$$

Therefore, there exists n large enough such that

$$
\mathrm{n}^{-1 / \mathrm{p}}\left|\sum_{\mathrm{i}=1}^{\mathrm{k}_{\mathrm{n}}} \mathrm{a}_{\mathrm{ni}} \mathrm{EV}_{\mathrm{ni}}\right|<\varepsilon / 8
$$

Thus, similar to the proof of (15)

$$
\begin{aligned}
& \mathrm{J}_{2} \leq \mathrm{C}+\sum_{\mathrm{j}=0}^{\infty} 2^{\mathrm{j}(\mathrm{t}+1)} \max _{2^{\mathrm{j}} \leq_{\mathrm{n}<2}{ }_{j+1} \sum_{\mathrm{i}=1}^{\mathrm{k}_{\mathrm{n}}} \mathrm{P}\left(\left|a_{n i} X_{n i}\right|>n^{1 / \mathrm{p}}\right)}^{(} \\
& \leq \mathrm{C}+\sum_{j=0}^{\infty} 2^{j(t+1)} \max _{2^{j} \leq_{n<2}} \sum_{j+1}^{\infty} n_{i=1}^{-\gamma / p_{i}} E\left|a_{n i} X_{n i}\right|^{\gamma} I\left(\left|a_{n i} X_{n i}\right|>n^{1 / p}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{j}=0
\end{aligned}
$$

$$
\begin{aligned}
& =\mathrm{C}+\mathrm{C} \sum_{\mathrm{j}=0}^{\infty} \mathrm{E}|\mathrm{X}|^{\gamma} \mathrm{I}\left(|\mathrm{X}|>2^{\mathrm{j} / \mathrm{p}}\right) \\
& =\mathrm{C}+\mathrm{C} \sum_{\mathrm{j}=0 \mathrm{i}=\mathrm{j}}^{\infty} \sum_{\mathrm{E}}^{\infty}|\mathrm{X}|^{\gamma} \mathrm{I}\left(2^{\mathrm{i} / \mathrm{p}}<|\mathrm{X}| \leq 2^{(\mathrm{i}+1) / \mathrm{p}}\right) \\
& =\mathrm{C}+\mathrm{C} \sum_{\mathrm{i}=0}^{\infty} \mathrm{iE}|\mathrm{X}|^{\gamma} \mathrm{I}\left(2^{\mathrm{i} / \mathrm{p}}<|\mathrm{X}| \leq 2^{(\mathrm{i}+1) / \mathrm{p}}\right) \\
& \leq \mathrm{C}+\mathrm{CE}|\mathrm{X}|^{\gamma} \log |\mathrm{X}|<\infty
\end{aligned}
$$

Since $\mathrm{v}>\gamma$, we have

$$
\begin{aligned}
& { }_{\mathrm{n}}^{\beta}=\sum_{\mathrm{i}=1}^{\infty}\left|\mathrm{a}_{\mathrm{ni}}\right|^{\gamma}=\left.\sum_{\mathrm{k}=1 \mathrm{i} \in \mathrm{I}_{\mathrm{nk}}}^{\infty} \sum_{\mathrm{ni}}\right|^{\gamma} \geq \sum_{\mathrm{k}=1}^{\infty}\left(\# \mathrm{I}_{\mathrm{nk}}\right)(\mathrm{k}+1)^{-\gamma / \mathrm{p}} \\
& \geq \sum_{\mathrm{k}=\mathrm{j}}^{\infty}\left(\# \mathrm{I}_{\mathrm{nk}}\right)(\mathrm{k}+1)^{-\mathrm{v} / \mathrm{p}}(\mathrm{j}+1)^{(\mathrm{v}-\gamma) / \mathrm{p}} \\
& >2^{-\mathrm{v} / \mathrm{p}} \sum_{\mathrm{k}=\mathrm{j}}^{\infty}\left(\# \mathrm{I}_{\mathrm{nk}}\right) \mathrm{k}^{-\mathrm{v} / \mathrm{p}} \mathrm{j}_{\mathrm{j}}(\mathrm{v}-\gamma) / \mathrm{p}
\end{aligned}
$$

Hence

$$
\begin{equation*}
\sum_{k=j}^{\infty}\left(\# I_{n k}\right) k^{-v / p} \leq C n^{\beta} j^{-(v-\gamma) / p} \text { for all } j \geq 1 \tag{25}
\end{equation*}
$$

By (25), similar to the proof of (19), we obtain

$$
\begin{gathered}
J_{5} \leq C \sum_{j=0}^{\infty} 2^{j(t+1)} \max _{2^{j} \leq_{n<2}{ }_{j+1} n^{-v / p+\beta} \sum_{i=1}^{2 n} E|X|^{v} I\left((i-1)^{1 / p} \leq|X|<i^{1 / p}\right)}^{\leq C+C \sum_{i=5}^{\infty}(\gamma-v) / p} E|X|^{v} I\left((i-1)^{1 / p} \leq|X|<i^{1 / p}\right)
\end{gathered}
$$

$$
\leq \mathrm{C}+\mathrm{CE}|\mathrm{X}|^{\gamma}<\infty .
$$

By (25), similar to the proof of (20), we obtain

$$
\begin{aligned}
& \mathrm{J}_{6} \leq \mathrm{C} \sum_{\mathrm{i}=1}^{\infty} \mathrm{i}^{-(\mathrm{v}-\gamma) / \mathrm{p}} \mathrm{E}|\mathrm{X}|^{\mathrm{v}} \mathrm{I}\left((\mathrm{i}-1)^{1 / \mathrm{p}} \leq|\mathrm{X}|<\mathrm{i}^{1 / \mathrm{p}}\right) \\
& +C \sum_{j=1}^{\infty} 2^{j(t+1)} \sum_{i=2}^{\infty} 2^{j}{ }^{j(\beta-\gamma / p)} i_{i}-(v-\alpha) / p e|X|^{v} I\left((i-1)^{1 / p} \leq|X|<i^{1 / p}\right) \\
& \leq \mathrm{CE}|\mathrm{X}|^{\gamma}+\mathrm{C} \sum_{\mathrm{i}=1}^{\infty} \mathrm{i}^{-(\mathrm{v}-\gamma) / \mathrm{p}} \mathrm{E}|\mathrm{X}|^{\mathrm{v}} \mathrm{I}\left((\mathrm{i}-1)^{1 / \mathrm{p}} \leq|\mathrm{X}|<\mathrm{i}^{1 / \mathrm{p}}\right) \\
& \leq \mathrm{C}+\mathrm{C} \sum_{\mathrm{i}=2}^{\infty} \mathrm{i}^{-(\mathrm{v}-\gamma) / \mathrm{p}} \mathrm{E}|\mathrm{X}|^{\mathrm{v}} \mathrm{I}\left((\mathrm{i}-1)^{1 / \mathrm{p}} \leq|\mathrm{X}|<\mathrm{i}^{1 / \mathrm{p}}\right) \\
& \leq \mathrm{C}+\mathrm{CE}|\mathrm{X}|^{\gamma}<\infty .
\end{aligned}
$$

Similar to the proof of Theorem 1, we have $\mathrm{J}_{4}<\infty$.
Remark 2. Obviously, Theorem B follows from Theorem 2 by let $\mathrm{h}(\mathrm{x})=1, \mathrm{X}_{\mathrm{ni}}=\mathrm{X}_{\mathrm{i}}$, for all $\mathrm{i} \geq 1, \mathrm{n} \geq 1$, and $\left\{\mathrm{X}_{\mathrm{i}}, \mathrm{i} \geq 1\right\}$ be a sequence of independent random variables. Furthermore, Theorem 2 extends and improves the sufficiency part of Theorem C (II) for the case of $\widetilde{\rho}$-mixing random variables.

Corollary 1. Let $\left\{\mathrm{X}_{\mathrm{nk}}, \mathrm{k} \geq 1, \mathrm{n} \geq 1\right\}$ be an array of zero-mean rowwise $\tilde{\mathrm{\rho}}$-mixing random variables stochastically dominated by a random variable X. Assume that $\overline{\lim }_{\mathrm{k} \rightarrow \infty} \sup _{\mathrm{n}} \tilde{\mathrm{\rho}}_{\mathrm{n}}(\mathrm{k})<1$ and $\mathrm{E}|\mathrm{X}|^{\mathrm{p}}<\infty$ for some $\mathrm{p}>2$. Let $\left\{\mathrm{a}_{\mathrm{ni}}, \mathrm{i} \geq 1, \mathrm{n} \geq 1\right\}$ be an array of real numbers satisfying (2) and

$$
\sum_{\mathrm{i}=1}^{\infty}\left|\mathrm{a}_{\mathrm{ni}}\right|^{\alpha}=\mathrm{O}(1) \text { for some } 2 \leq \alpha<\mathrm{p} .
$$

Then

$$
\sum_{j=0}^{\infty} 2^{j} \max _{2^{j} \leq_{n<2}{ }_{j+1}} P\left(n^{-1 / p}\left|\sum_{i=1}^{\infty} a_{n i} X_{n i}\right|>\varepsilon\right)<\infty \text { for all } \varepsilon>0
$$

and

$$
\sum_{\mathrm{n}=1}^{\infty} \mathrm{P}\left(\mathrm{n}^{-1 / \mathrm{p}}\left|\sum_{\mathrm{i}=1}^{\infty} \mathrm{a}_{\mathrm{ni}} \mathrm{X}_{\mathrm{ni}}\right|>\varepsilon\right)<\infty \text { for all } \varepsilon>0
$$

Proof. Let $\mathrm{t}=0$ and $\beta=0$ and $\mathrm{h}(\mathrm{x})=1$. Clearly $\left|\mathrm{a}_{\mathrm{ni}}\right|=\mathrm{O}(1)$. Thus the result follows from Theorem 1 (iii).
Corollary 2. Let $\left\{\mathrm{X}_{\mathrm{nk}}, \mathrm{k} \geq 1, \mathrm{n} \geq 1\right\}$ be an array of zero-mean rowwise $\tilde{\mathrm{\rho}}$-mixing random variables stochastically dominated by a random variable X. Assume that $\overline{\lim }_{\mathrm{k}} \rightarrow \infty \sup _{\mathrm{n}} \tilde{\mathrm{P}}_{\mathrm{n}}(\mathrm{k})<1$ and $\mathrm{E}|\mathrm{X}|^{2} \log |\mathrm{X}|<\infty$. Let $\left\{\mathrm{a}_{\mathrm{ni}}, \mathrm{i} \geq 1, \mathrm{n} \geq 1\right\}$ be an array of real numbers satisfying

$$
\sum_{i=1}^{\infty}\left|a_{n i}\right|^{2}=\mathrm{O}(1)
$$

Then

$$
\sum_{j=0}^{\infty} 2^{j} \max _{2^{j} \leq_{n<2}} P\left(n^{-1 / p}\left|\sum_{i=1}^{\infty} a_{n i} X_{n i}\right|>\varepsilon\right)<\infty \text { for all } \varepsilon>0
$$

and

$$
\sum_{\mathrm{n}=1}^{\infty} \mathrm{P}\left(\mathrm{n}^{-1 / 2}\left|\sum_{\mathrm{i}=1}^{\infty} \mathrm{a}_{\mathrm{ni}} \mathrm{X}_{\mathrm{ni}}\right|>\mathcal{E}\right)<\infty \text { for all } \mathcal{E}>0
$$

Proof. Let $\mathrm{t}=0, \boldsymbol{\beta}=0$, and $\mathrm{p}=2$. Clearly $\left|\mathrm{a}_{\mathrm{ni}}\right|=\mathrm{O}(1)$. Thus the result follows from Theorem 2 (ii).

Remark 3. Set $X_{n i}=X_{i}$ for all $n \geq 1$ and $\mathrm{i} \geq 1$, let $\left\{X_{i}, i \geq 1\right\}$ be a sequence of i.i.d. random variables. In this particular case Corollaries 1 and 2 were proved by Li et al. [19]. Hence Corollaries 1 and 2 extend the results of Li et al. [19].

As a corollary of Theorem 1, we can obtain the following result on the rate of convergence for moving average processes.

Corollary 3. Let $\left\{X_{\mathrm{nk}}, \mathrm{k} \in \mathbf{Z}, \mathrm{n} \in \mathbf{Z}\right\}$ be an array of zero-mean rowwise $\tilde{\rho}$-mixing random variables stochastically dominated by a random variable X. Assume that $\overline{\lim }_{\mathrm{k}} \rightarrow \infty \sup _{\mathrm{n}} \tilde{\mathrm{\rho}}_{\mathrm{n}}(\mathrm{k})<1$ and $\mathrm{E}|\mathrm{X}|^{\mathrm{p}(\mathrm{t}+2)}<\infty$ for some $0<\mathrm{p}<2$ and $\mathrm{p}(\mathrm{t}+2)>1$. Let $\left\{\mathrm{a}_{\mathrm{n}},-\infty<\mathrm{n}<\infty\right\}$ be a sequence of real numbers such that $\sum_{\mathrm{n}=-\infty}^{\infty}\left|\mathrm{a}_{\mathrm{n}}\right|<\infty$. Set $\mathrm{a}_{\mathrm{ni}}=\sum_{\mathrm{j}=\mathrm{i}+1}^{\mathrm{i}+\mathrm{n}} \mathrm{a}_{\mathrm{j}}$ for each i and n . Then

$$
\sum_{j=0}^{\infty} 2^{j(t+1)} \max _{2^{j} \leq_{n<2}{ }^{j+1}} P\left(n^{-1 / p}\left|\sum_{i=-\infty}^{\infty} a_{n i} X_{n i}\right|>\varepsilon\right)<\infty \text { for all } \mathcal{E}>0
$$

and

$$
\sum_{\mathrm{n}=1}^{\infty} \mathrm{n}^{\mathrm{t}} \mathrm{P}\left(\left|\sum_{\mathrm{i}=-\infty}^{\infty} \mathrm{a}_{n i} \mathrm{X}_{\mathrm{ni}}\right| / \mathrm{n}^{1 / \mathrm{p}}>\boldsymbol{\varepsilon}\right)<\infty \text { for all } \boldsymbol{\varepsilon}>0
$$

Proof. Repeats the proof of Sung [1] and hence omitted.
Remark 4. Corollary 3 extends Corollary 3 of Sung [2] for arrays of rowwise $\widetilde{\rho}$-mixing random variables.

References

[1] Hsu, P. L., Robbins H., Complete convergence and the law of large numbers. Proc. Nat. Acad. Sci. USA., 1947; 33: 25-31.
[2] Sung, S. H., Complete convergence for weighted sums of random variables. Statist. Probab. Lett., 2007; 77: 303-311.
[3] Wang, Y. B., Liu, X. G., Su, C., Equivalent conditions of complete convergence for independent weighted sums. Science China (series A), 1998; 41: 939-949.
[4] Stein, C., A bound on the error in the normal approximation to the distribution of a sum of dependent random variables. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley: University of California Press.,1972; 2: 583-602.
[5] Bradley, R. C., On the spectral density and asymptotic normality of weakly dependent random fields. J. Theor. Probab., 1992; 5: 355-373.
[6] Bradley, R. C., Equivalent mixing conditions for random fields. Ann. Probab., 1993; 21: 1921-1926.
[7] Bryc, W., Smolenski W., Moment conditions for almost sure convergence of weakly correlated random variables. Proc. Amer. Math. Soc., 1993; 19: 629-635.
[8] Shanchao, Y., Some moment inequalities for partial sums of random variables and their applications. Chinese Sci. Bull.,1998; 43: 1823-1827.
[9] Gut, A., Peligrad, M., Almost-sure results for a class of dependent random variables. J. Theoret. Probab., 1999; 12: 87-104.
[10] Wu, Q., Some convergence properties for $\widetilde{\rho}$-mixing random variables sequences. J. Engng. Math. (Chinese), 2001; 18: 58-64.
[11] Wu, Q., Convergence for weighted sums of $\tilde{\rho}$-mixing random sequences. Math. Appl. (Chinese), 2002; 15: 1-4.
[12] Shixin, G., Almost sure convergence for $\tilde{\rho}$-mixing random variable sequences. Statist. Probab. Lett., 2004; 67: 289-298.
[13] Utev, S. Peligrad, M., Maximal inequalities and an invariance principle for a class of weakly dependent random variables. J. Theoret. Probab., 2003; 16: 101-115.
[14] Dehua, Q. and Shixin, G., Convergence for arrays of $\widetilde{\rho}$-mixing random variables. Acta Mathematica Scientia. (Chinese), 2005; 25A(1): 73-78.
[15] Dehua, Q. and Shixin, G., Convergence for weighted sums of $\widetilde{\rho}$-mixing random variables sequences. J. of Math. (PRC), 2008; 28: 258-264.
[16] Dehua, Q. and Shixin, G., The Hájeck-Rènyi inequqlity and strong law of large numbers for $\tilde{\rho}$-mixing sequences. Journal of Mathematics in Practice and Theory (Chinese), 2007; 37: 107-111.
[17] Seneta E., Regularly varying function, Lecture Notes in Math. 508, Springer, Berlin, 1976.
[18] Bai Z.D., Su C., The complete convergence for partial sums of i.i.d. random variables. Sci Sinica(Ser A), 1985; 28: 1261-1277.
[19] Li D., Rao M. B., Jiang T., Wang X., Complete convergence and almost sure convergence of weighted s ums of random variables. J. Theoret. Probab., 1995; 8: 49-76.

