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Abstract 

      In this paper we obtain some new results on complete convergence for weighted sums 

of arrays of rowwise ~ -mixing random variables. Our results improve and extend the 

some results established for sequences of independent random variables. 
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1. Introduction 

The concept of complete convergence was introduced by Hsu and Robbins in 

[1] as follows: A sequence of random variables 1}n,X{ n   are said to converge 

completely to a constant C  if  <)|>CX(|P n1=n  for all 0> . From then 

on, many authors have devoted their study to complete convergence. 

Recently, Sung [2] proved the following two results. In Theorems A and B we 

assume that 1}n,X{ n   is a sequence of zero-mean independent random variables 

stochastically dominated by a random variable X , that is, )x|>X(|CP)x|>X(|P n   

for all 0>x  and all 1n  and some positive constant C . Moreover, 

1}n1,i,a{ ni   is an array of real numbers satisfying such that 

 |<a|sup ni1i1,n  and ini1=i Xa
 is finite almost surely for all 1n . Finally, let 

0>p,<<1,t   be constants such that 0>1)t(p=  . 

Theorem A.  Assume that  <|X|E  and  

  
=1

| | = ( ) < . 1ni

i

a O n for some   


  

(i) If 2<1  , or 

(ii) if 2 , and  

 
2

=1

= ( ) < 2 / , (2)q

ni

i

a O n for some q p


  

then  

 
1/

=1 =1

( | |> ) < > 0. (3)t p

ni i

n i

n P n a X for all 
 

    

 Theorem B.  Assume that  |<X|log|X|E  and  

 

=1

| | = ( ) 1. (4)ni

i

a O n for all n 


  

(i) 1 < 2If or  
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(ii) 2If and   p2/<qsomefor)n(O=a q2
ni1=i


, 

then (3) holds. 

Let Z  be the set of integers and }k1,n,a{ nk Z  be an array of 

constants. Denote  

1,m1,n2,p},1)m(|a:|k{#=1)m,n(N p1/
nk  Z  

where the symbol A#  stands for the number of elements in the set A . For two 

sequences of real numbers 1}m,a{ m   and 1}m,b{ m  , we write mm ba   as 

m , if )b(O=a mm  and vise versa )a(O=b mm  as m . 

Wang et al. [3] proved the following result: 

Theorem C.  Let 1>r  and }i,X{ i Z  be a sequence of i.i.d. random variables and 

let }i1,n,a{ ni Z  for be an array of constants. 

(I)  If 2>p  and  

( 1)/( , 1) , 1, , 2 < , (5)q r pN n m m n as m when q p      

= 0, 1 ( 1), (6)EX when q r   

2 = ( ), , 2 ( 1), 0 < < 2 / , (7)ni

i Z

a O n n when q r for some p 


    

then the following statements are equivalent:  

;<|X|E)i( 1)r(p 
 

0.>allfor<|>Xa|nPmax2)ii( knk
k

p1/
i2<n1i2

1)r(i

1=i






















Z
 

(II) If 2=q=p  and  

 ,mas1,n,m1)m,n(N 1)r(  
 

 1),r2(1when0,=EX   
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 ,n(1),O=|a| 1)r2(
ni

i




Z

 

 then the following statements are equivalent:  

 ;<|)X|(1log|X|E)i( 1)r2( 
 

0.>allfor,<|>Xa|nPmax2)ii( knk
k

1/2
i2<n1i2

1)r(i

1=i






















Z
 

The main purpose of this paper is to generalize the above mentioned results for 

~ -mixing random variables (see the definition below). Theorem A and Theorem B and 

the sufficient part of Theorem C are extended and improved for ~ -mixing case. 

Let }P,,{   be a probability space. In the following, all random variables 

are assumed to be defined on }P,,{  . For a sequence of random variables 

1}n,X{ n   we denote )NSn:X(= nS  . Given two  -subalgebras 

 21 , , denote  

 )},(L),(L|,),(orrc{|sup=),( 221221   

where the correlation coefficient is defined in usual way  

)(arV)(arV
EE)(E

=),(orrc



  

and by )(L2   we denote the space of all  -measurable random variables   such 

that  <)(E 2
. 

Stein [4] introduced the following coefficients of dependence (with slightly 

different notations):  

},k)T,S(distthatsuchNT,Ssubsetsfiniteall:),({sup=)k(~ TS   

0k . Obviously, 0,k1,)k(~1)k(~0   and 1.=(0)~  
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Definition. A sequence of random variables 1}n,X{ n   are said to be a ~ -mixing 

sequence if there exists Nk  such that 1<)k(~ . An array of random variables 

1}n1,k,X{ nk   are said to be an array of rowwise ~ -mixing random variables, if, 

for every positive integer n  the sequence of random variables 1}k,X{ nk   is a ~ -

mixing sequence. 

For fixed n -th row of an array of rowwise ~ -mixing random variables 

1}k1,n,X{ nk   we denote the coefficients of dependence of the sequence 

1}k,X{ nk   as )(~ n   for every 1n . 

The notion of ~ -mixing assumption is similar to  -mixing, but they are quite 

different from each other. A number of publications are devoted to ~ -mixing sequence. 

We refer to Bradley [5,6] for the central limit theorem, Bryc and Smolenski [7] for moment 

inequalities and almost sure convergence, Shanchao [8] for  

moment inequalities and strong law of large numbers, Gut and Peligrad [9], Wu [10,11], 

and Shixin [12] for almost sure convergence, Utev and Peligrad [13] for maximal 

inequalities and the invariance principle, Dehua and Shixin [14,15] for complete 

convergence, Dehua and Shixin [16] for Hájeck-Rènyi inequality and strong law of large 

numbers among many others. 

 Recall that a measurable function h  is said to be slowly varying if for each 

0>   

1.=
)x(h
)x(h

lim
x




 

We refer to Seneta [17] for other equivalent definitions and for detailed and 

comprehensive study of properties of such functions. 

Throughout this paper, we assume that nini1=i Xa
 is finite almost surely, C  

is a positive constant which may vary from one place to another, the symbol ]x[  

denotes the greatest integer less than x , and the symbol x  denotes the least 

integer more than x . 



146                                                                   Thailand Statistician, 2012; 10(1):141-162 

2.  Lemmata 

In order to prove our main result, we need the following lemmas. The proof of 

the first lemma could be found in Utev and Peligrad [13]. 

Lemma 1.  For a positive integer J  and 1<r0  and 2u , there exists a positive 

constant )r,J,u(C=C  such that if 1}n,X{ n   is a sequence of random variables 

with 0=EX,r)J(~ k , and <|X|E u
k  for every 1k , then for all 1n ,  

 .EX|X|ECXmaxE
/2u

2
k

n

1=k

u
k

n

1=k

u

k
i

1=kni1 























 


 

The second lemma is well known and we do not present the proof. 

 

Lemma 2.  Let 1}k1,n,X{ nk   be an array of random variables stochastically 

dominated by a random variable X, then there exists a constant D  such that for all 

0>u  and 0>x , 

(i) )},x|>X(|Px)x|X(|I|X|E{D)x|X(|I|X|E uu
nk

u
nk   

(ii) ).x|>X(|I|X|DE)x|>X(|I|X|E u
nk

u
nk    

 

The proof of the last lemma could be found in Bai and Su [18] 

Lemma 3.  Let 0>)x(h  be a slowly varying function as x , then 

(i) 1,=
)(2h

)x(h
suplim k1k2xk2k 

  

 0.>allfor0,=)x(hxlim,=)x(hxlim
xx

 






 

(ii) For all 0>0,>  , and all positive integers k   

 ).(2h2C)(2h2)(2h2C kkjjk

1=j

kk  
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(iii) For all 0>0,<   all positive integers k   

 ).(2h2C)(2h2)(2h2C kkjj

k=j

kk  



  

3.   Main Results and Proofs 

 With the preliminaries accounted for, we can now formulate and prove main 

results of this paper.  

Theorem 1.  Let ,t0,>p  be constants such that 1>t  , 0>)x(h  be a slowly 

varying function, 1}k1,n,X{ nk   be an array of zero-mean rowwise ~ -mixing 

random variables stochastically dominated by a random variable X , and 

1}n1,i,a{ ni   be an array of constants satisfying (1). Assume that  

,<)|X(|h|X|Eand1<)k(~suplim p
n

nk
 



 

where 0>1)t(p=  . 

If 1=t   we additionally assume that  <|X|E . 

(i) If 1= , and |<X|E , then  

( 1) 1/

1
2 <2=0 =1

2 (2 ) | |> < > 0, (8)max
j t j p

ni ni
j j

nj i

h P n a X for all 
 

 




 
 

 
   

moreover  

1/

=1 =1

( ) | |> < > 0. (9)t p

ni ni

n i

n h n P n a X for all 
 

 
 

 
   

(ii) If 2<<1  , then (8) and (9) hold. 

(iii) If 1}i1,n,a{2,= ni   satisfies (2), and <|X|E 2
, then (8) and (9) hold. 

(iv) If 2  and 1}i1,n,a{ ni   satisfies (2), then (8) and (9) hold.  

 

 Proof. First of all we note that it is enough to show that (8) holds. Really, by 

Lemma 3 we have  
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|>Xa|nP)n(hn nini

1=i

p1/t

1=n
 

 

















|>Xa|nP)n(hn= nini

1=i

p1/t
1j2<nj20=j

 

,<|>Xa|nPmax)(2h2CC nini
1=i

p1/
1j2<nj2

j1)t(j

0=j











 









 

 therefore, (9) holds. 

If 1<t  , then by Lemma 3 (i) we obtain that (8) holds. Thus, we assume that 

1t  . Since nini1=i Xa
 is finite almost surely for each 1n , there exists 

positive integer nk  such that  

 1.nallfor,n</2)|>Xa|n(P 2)t
nini

1nk=i

p1/  





  

By Lemma 3 (iii), in order to prove (8), it is enough to show that  

( 1) 1/

1
2 <2=0 =1

2 (2 ) ( | |> / 2) < . (10)max

k
n

j t j p

ni ni
j j

nj i

h P n a X 


 




   

Without loss of generality, we assume that 0>ani  for all 

1=asup1,i1,n ni1n1,i  , and 
  nani1=i . Thus, for any 0 , we have  

=1

. (11)ni

i

a n  


   

For 1n1,i   we define  

 ).n|>Xa(|IX=V),n|Xa(|IX=U p1/
nininini

p1/
nininini   

Since 0=EX ni , we obtain  
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 /2)|>Xa|n(Pmax)(2h2 nini
nk

1=i

p1/
1j2<nj2

j1)t(j

0=j









 

/4)|>)EUU(a|n(Pmax)(2h2 ninini
nk

1=i

p1/
1j2<nj2

j1)t(j

0=j
 








 

 

/4)|>)EVV(a|n(Pmax)(2h2 ninini
nk

1=i

p1/
1j2<nj2

j1)t(j

0=j
 








 

1 2= . (12)
Def

J J  

We estimate each term 1J  and 2J  separately. 

For 2J , we first prove that  

1/

=1

| | 0 . (13)

k
n

p

ni ni

i

n a EV as n    

If 1= , since |<X|E , by Lemma 2 and (11), we have  

 )n|>X(|I|X|En|EVa|n p1/p1/
nini

nk

1=i

p1/    

 .nas0)n|>X(|I|X|En p1/1)t(  
 

If 1>t1,>  , select   such that  <<,1},p{max . Since 

 <)|X(|h|X|E p
, then by Lemma 3 (i), we have <|X|E . Therefore, by 

Lemma 2 and (11), we obtain  

)n|>Xa(|I|Xa|Enn|EVa|n p1/
nininini

p1)/(

1=i

p1/
nini

nk

1=i

p1/ 



   

 )n|>X(|I|X|En p1/p/   
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 .nas0)n|>X(|I|X|En= p1/p)/p( 
 

 If 1=t1,>  , since  <|X|E  we obtain  

)n|>Xa(|I|Xa|Enn|EVa|n p1/
nininini

p1)/(

1=i

p1/
nini

nk

1=i

p1/ 



   

 )n|>X(I|X|En p1/p/   

 .nas0)n|>X(I|X|E= p1/ 
 

 Thus, (13) holds. Hence, there exists n  large enough such that  

1/

=1

| |< / 8. (14)

k
n

p

ni ni

i

n a EV    

Select 0>  such that 0>  and  > , by (14), (11), Lemma 2 (ii) and 

Lemma 3 (ii),we have  

/8)|>Va|n(Pmax)(2h2CJ nini
nk

1=i

p1/
1j2<nj2

j1)t(j

0=j
2  








 

 )n|>Xa(|Pmax)(2h2C p1/
nini

nk

1=i1j2<nj2

j1)t(j

0=j







  

)n|>Xa(|I|Xa|Enmax)(2h2C p1/
nininini

p)/(

1=i1j2<nj2

j1)t(j

0=j











 

)2|>X(|I|X|E)2(2h2C p/jjp)/(jj1)t(j

0=j




  

 )2|>X(|I|X|E)(2h2C= p/jjp/j

0=j
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 )2|X<|(2I|X|E)(2h2C= p1)/i(p/i

j=i

jp/j

0=j







   

 )(2h2)2|X<|(2I|X|EC= jp/ji

0=j

p1)/i(p/i

0=i




   

 )2|X<|(2I|X|E)(2hCC p1)/i(p/ii

0=i




   

 
 

| | (| | ) < . (15)pC CE X h X    

In order to estimate 1J , we first note that obviously for every positive integer n , 

}ki,1EUU{ nnini   is a sequence of zero-mean ~ -mixing random variables 

with the mixing coefficient not greater than )(~ n  . 

Fix any 2v  and >v  (the value of v  will be specified later). By Markov's 

inequality, Lemma 1, and rC -inequality, , we have  









 





 /2v2

nini
nk

1=i

v
nini

nk

1=i

p/v
1j2<nj2

j1)t(j

0=j
1 )|Ua|E(|Ua|Enmax)(2h2CJ

 









 







 /2v2

nini
1=i

v
nini

1=i

p/v
1j2<nj2

j1)t(j

0=j
)|Ua|E(|Ua|Enmax)(2h2C

 

3 4= . (16)
Def

J J  

Let 1n1,k},k|a<|1)k(:i{=I p1/
ni

p1/
nk  

, then N=Ink1=k
  for 

all 1n . Since  >>v , we have 1k,j,j>kallforj>k p)/v(p)/v( 
. 

For 0>   
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p/

nk
1=k

ni
nkIi1=k

ni
1=i

1)k)(I#(|a|=|a|n 










    

 
p)/v(p/v

nk
j=k

1)j(1)k)(I#( 


  

 .jk)I#(2> p)/v(p/v
nk

j=k

p/ 



  

 For 0< , we also have  

 
p/

nk
1=k

ni
nkIi1=k

ni
1=i

k)I#(|a|=|a|n 












   

 .jk)I#(> p)/v(p/v
nk

j=k




  

 Therefore,  

 
/ ( )/

=

(# ) 1. (17)v p v p

nk

k j

I k Cn j for all j 


     

By the same way as we proved (15) and by Lemma 2(i), we have  














 









)|(|||)|>(|max)(22 /1/1

1=
1

2<2

1)(

0=

3

p

ni

v

ni

p

ni

p

v

i

p

v

j
n

j

jtj

j

nXaIXaEnXaPnnhCJ

 )|>(|max)(22 /1

1=
1

2<2

1)(

0=

p

ni

i
j

n
j

jtj

j

nXaPhC 








  

)1))k(n(|<X(|I|X|E)nk)(I#(max)(2h2C p1/vp/v
nk

1=k1j2<nj2

j1)t(j

0=j
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)|<|1)((||))(#(max)(22= /1/1
1)(

1=1=
1

2<2

1)(

0=

ppv
kn

i

p

v

nk

k
j

n
j

jtj

j

iXiIXEnkIhCC  








 

)|<|1)((||))(#(max)(22= /1/1
2

1=1=
1

2<2

1)(

0=

ppv
n

i

p

v

nk

k
j

n
j

jtj

j

iXiIXEnkIhCC  








)|<|1)((||))(#(max)(22 /1/1
1)(

12=2=
1

2<2

1)(

0=

ppv
kn

ni

p

v

nk

k
j

n
j

jtj

j

iXiIXEnkIhC  












 

5 6= . (18)
Def

C J J   

Since >v , we have that 0<p)/v(  . Then by (17) and Lemma 3  

 )i|<X|1)i((I|X|Enmax)(2h2CJ p1/p1/vn2

1=i

p/v
1j2<nj2

j1)t(j

0=j
5  








 

 )i|<X|1)i((I|X|E)(2h2C p1/p1/v4

1=i

jp)/v(j

0=j
 




 

 )i|<X|1)i((I|X|E)(2h2C p1/p1/v
2j2

5=i

jp)/v(j

1=j
 





 

)(2h2)i|<X|1)i((I|X|ECC jp)/v(j

2ilog2=j

p1/p1/v

5=i








   

 )i|<X|1)i((I|X|E)i(hiCC p1/p1/vp)/v(

5=i
 



  

 | | (| | ) < . (19)pC CE X h X    

 

Next,  
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)i|<X|1)i((I|X|E)nk)(I#(max)(2h2CJ p1/p1/vp/v
nk

1]
n
i
[=k1n2=i

1j2<nj2

j1)t(j

0=j
6  















)i|<X|1)i((I|X|E)
n
i
(nmax)(2h2C p1/p1/vp)/v(p/v

1n2=i1j2<nj2

j1)t(j

0=j
 











 )i|<X|1)i((I|X|EiC p1/p1/vp)/v(

3=i
 



  

)i|<X|1)i((I|X|Ei2)(2h2C p1/p1/vp)/v()p/(j
j2=i

j1)t(j

1=j
 






  

)(2h2)i|<X|1)i((I|X|EiC|X|CE jp)/(j
]ilog2[

1=j

p1/p1/vp)/v(

2=i





 

 )i|<X|1)i((I|X|E)i(hiCC p1/p1/vp)/v(

2=i
 



  

 | | (| | ) < . (20)pC CE X h X    

Therefore, from (18), (19) , and (20) we have that <J3  for 1 . 

For 4J , if 2  by (2) we have  

2 2

=1 =1

| | | | . (21)q

ni ni ni

i i

E a U C E a X Cn
 

    

Since p2/<q , we can chose v  large enough such that 0<)p1//2q(v1)t(  . 

By Lemma 3 (iii) we obtain  

( 1) / /2 {( 1) ( /2 1/ )}

4
1

2 <2=0 =0

2 (2 ) 2 (2 ) < . (22)max
j t j v p vq j t v q p j

j j
nj j

J C h n n C h
 

    




   

 

If 2<1  , let 2=v , then <J=J 34 . Therefore <J1  for 1 . By (12), 

(10) holds.  
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Remark 1. (i) If there exists a positive constant 0>M  such that M)x(h   for 

sufficiently large x , then the assumption  <)|X(|h|X|E p1)t(p
 implies that 

 <|X|E 1)t(p
. 

(ii) Let 1n1,iallfor,X=X1,=)x(h ini  , and 1}i,X{ i   be a 

sequence of independent random variables. Then Theorem A follows from Theorem 1, 

since independent random variables are a special case of ~ -mixing random variables. 

(iii) Let 2r=t0,=  , and 1=)x(h . If condition (5) holds, then (1) holds 

according to (2.11) of Wang et al. [2], with = q~ <q1),2r(p=1),r(  q~ p< . 

When 2<1)r(q<0  , by (2.11) of Wang et al. [2], we have that (1)O=a2niiZ . 

Therefore, if (5) and (7) hold, we have )n(O=a2nii


 Z , for p2/<<0  . Thus 

Theorem 1 extends and improves the sufficient part of Theorem C (I) for the case of ~ -

mixing random variables. 

 If condition (1) on the weights is replaced by a weaker condition (4), we obtain 

the following theorem. 

Theorem 2.  Let 1}n1,k,X{ nk   be an array of zero-mean rowwise ~ -mixing 

random variables stochastically dominated by a random variable X . Assume that 

1<)k(~suplim nnk   and  |<X|log|X|E , where 0>1)t(p=   

and 0>p . Let 1}n1,i,a{ ni   be an array of real numbers satisfying (4). 

(i) If 2<1  , then  

( 1) 1/

1
2 <2=0 =1

2 | |> < > 0, (23)max
j t p

ni ni
j j

nj i

P n a X for all 
 

 




 
 

 
   

moreover  

1/

=1 =1

| |> < > 0. (24)t p

ni ni

n i

n P n a X for all 
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(ii) If 2  and 1}n1,i,a{ ni   satisfies (2), then (23) and (24) hold.  

Proof. Let knknknk J,I,V,U  be as in the proof of Theorem 1. From this proof, it is 

sufficient to show <J2  and 4,5,6=j,<J j   with 1=)x(h . 

For 2J , we first prove that  

.nas0|EVa|n nini
nk

1=i

p1/ 


 

Since  |<X|log|X|E , we have  <|X|E  and hence  

)n|>Xa(|I|Xa|Enn|EVa|n p1/
nininini

p1)/(

1=i

p1/
nini

nk

1=i

p1/ 



   

 )n|>X(I|X|En p1/p/   

 .nas0)n|>X(I|X|En= p1/1))t( 
 

 Therefore, there exists n  large enough such that  

 /8.|<EVa|n nini
nk

1=i

p1/ 


 

Thus, similar to the proof of (15)  

 )n|>Xa(|Pmax2CJ p1/
nini

nk

1=i1j2<nj2

1)t(j

0=j
2 






  

)n|>Xa(|I|Xa|Enmax2C p1/
nininini

p/

1=i1j2<nj2

1)t(j

0=j









  

 )2|>X(|I|X|E22CC p/jjp/j1)t(j

0=j
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 )2|>X(|I|X|ECC= p/j

0=j




  

 )2|X<|(2I|X|ECC= p1)/i(p/i

j=i0=j




   

 )2|X<|(2I|X|iECC= p1)/i(p/i

0=i




   

 .|<X|log|X|CEC  
 

 Since >v , we have  

 
p/

nk
1=k

ni
nkIi1=k

ni
1=i

1)k)(I#(|a|=|a|=n 










   

 
p)/v(p/v

nk
j=k

1)j(1)k)(I#( 


  

 .jk)I#(2> p)/v(p/v
nk

j=k

p/v 



  

 Hence  

/ ( )/

=

(# ) 1. (25)v p v p

nk

k j

I k Cn j for all j 


     

By (25), similar to the proof of (19), we obtain  

)i|<X|1)i((I|X|Enmax2CJ p1/p1/vn2

1=i

p/v
1j2<nj2

1)t(j

0=j
5  








 

 )i|<X|1)i((I|X|EiCC p1/p1/vp)/v(

5=i
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 .<|X|CEC  
 

 By (25), similar to the proof of (20), we obtain  

 )i|<X|1)i((I|X|EiCJ p1/p1/vp)/v(

1=i
6  



  

)i|<X|1)i((I|X|Ei22C p1/p1/vp)/v()p/(j
j2=i

1)t(j

1=j
 






  

 )i|<X|1)i((I|X|EiC|X|CE p1/p1/vp)/v(

1=i
 




  

 )i|<X|1)i((I|X|EiCC p1/p1/vp)/v(

2=i
 



  

 .<|X|CEC  
 

 Similar to the proof of Theorem 1, we have <J4 .  

Remark 2. Obviously, Theorem B follows from Theorem 2 by let 

1n1,iallfor,X=X1,=)x(h ini  , and 1}i,X{ i   be a sequence of 

independent random variables. Furthermore, Theorem 2 extends and improves the 

sufficiency part of Theorem C (II) for the case of ~ -mixing random variables. 

Corollary 1. Let 1}n1,k,X{ nk   be an array of zero-mean rowwise ~ -mixing 

random variables stochastically dominated by a random variable X . Assume that 

1<)k(~suplim nnk   and <|X|E p
 for some 2>p . Let 

1}n1,i,a{ ni   be an array of real numbers satisfying (2) and  

 .p<2somefor(1)O=|a| ni
1=i
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Then  

 0>allfor<|>Xa|nPmax2 nini
1=i

p1/
1j2<nj2

j

0=j



















 

and  

 0.>allfor<)|>Xa|n(P nini
1=i

p1/

1=n






 

 

Proof. Let 0=t  and 0=  and 1=)x(h . Clearly (1).O|=a| ni  Thus the result 

follows from Theorem 1 (iii).  

Corollary 2.  Let 1}n1,k,X{ nk   be an array of zero-mean rowwise ~ -mixing 

random variables stochastically dominated by a random variable X . Assume that 

1<)k(~suplim nnk   and .|<X|log|X|E 2   Let 1}n1,i,a{ ni   be an 

array of real numbers satisfying  

 (1)O=|a| 2
ni

1=i



 

Then  

 0>allfor<|>Xa|nPmax2 nini
1=i

p1/
1j2<nj2

j

0=j



















 

and  

 0.>allfor<)|>Xa|n(P nini
1=i

1/2

1=n






 

 

Proof. Let 0=0,=t  , and 2=p . Clearly (1).O|=a| ni  Thus the result follows from 

Theorem 2 (ii).  
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Remark 3. Set ini X=X  for all 1n  and 1i , let 1}i,X{ i   be a sequence of 

i.i.d. random variables. In this particular case Corollaries 1 and 2 were proved by Li et al. 

[19]. Hence Corollaries 1 and 2 extend the results of Li et al. [19]. 

 As a corollary of Theorem 1, we can obtain the following result on the rate of 

convergence for moving average processes. 

Corollary 3.  Let }n,k,X{ nk ZZ   be an array of zero-mean rowwise ~ -mixing 

random variables stochastically dominated by a random variable X . Assume that 

1<)k(~suplim nnk   and  <|X|E 2)t(p
 for some 2<p<0  and 

1>2)t(p  . Let }<n<,a{ n   be a sequence of real numbers such that 


 |<a| n=n . Set j

ni
1i=jni a=a  
  for each i  and n . Then  

 0,>allfor<|>Xa|nPmax2 nini
=i

p1/
1j2<nj2

1)t(j

0=j
























 

and  

 0.>allfor<)>n/|Xa(|Pn p1/
nini

=i

t

1=n







 

 

Proof. Repeats the proof of Sung [1] and hence omitted.  

Remark 4. Corollary 3 extends Corollary 3 of Sung [2] for arrays of rowwise ~ -mixing 

random variables. 
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